
Non-Repudiation and End-to-End Security
for Electric-Vehicle Charging

Pol Van Aubel, Erik Poll, and Joost Rijneveld
Radboud University, the Netherlands

{pol.vanaubel,e.poll,j.rijneveld}@cs.ru.nl

Abstract—In this paper we propose a cryptographic solution
that provides non-repudiation and end-to-end security for the
electric-vehicle-charging ecosystem as it exists in the Netherlands.
It is designed to provide long-term non-repudiation, while al-
lowing for data deletion in order to comply with the GDPR.
To achieve this, we use signatures on hashes of individual data
fields instead of on the combination of fields directly, and we use
Merkle authentication trees to reduce the overhead involved.

I. INTRODUCTION

Electric-vehicle charging in the Netherlands requires com-
munication between at least four entities:

• Electric Vehicles (EVs);
• Charge Points (CPs) charging the vehicles;
• Charge Point Operators (CPOs) running the CPs; and
• e-Mobility Service Providers (eMSPs) contracted by the

drivers of EVs to provide the energy.
To facilitate this communication, several protocols are used or
will be used in the near future. We will look at the combination
of three of these:

• ISO15118 [1] between EV and CP;
• OCPP [2] between CP and CPO; and
• OCPI [3] between CPO and eMSP.

These protocols are intended to exchange, among other things,
charge data records that describe charge sessions that have
taken place, including location and the measurements taken
by the electricity meter. They are used by CPOs and eMSPs
for billing customers and each other.

The protocols rely on TLS to provide authenticity and
secrecy against external (MITM) attackers. We do not pro-
pose to replace this mechanism, these security guarantees are
important. However, the security guarantees of TLS are also
insufficient because:

1) TLS does not provide long-term authenticity or non-
repudiation on the data it transported. Therefore, the
eMSP has no way to prove that data was generated by
the CPO or EV. Similarly, the CPO has no way to prove
that data was generated by an eMSP or EV.

2) CPOs act as intermediaries (i.e. proxies) between EV
and eMSP. Although they use TLS for communication
with the EV, and for communication with the eMSP, they
are between two TLS links. They forward data and see

Funding: This work is supported by the EU Regional Development Fund
(ERDF), as part of the project Charge & Go.

978-1-5386-8218-0/19/$31.00 c©2019 IEEE

m
mshared mCPO meMSP

EV id Time CP Location Contract id Rate

Fig. 1. We can view a message from an EV as containing fields used solely
by the CPO, fields used solely by the eMSP, and fields used by both. Given
here is an example message m with 5 data fields, 2 of which are shared.

that data pass in plaintext. With regards to the example
in Figure 1, the CPO should not be able to see the values
of Contract id and Rate. On the other hand, it should not
forward the CP Location to the eMSP.

To address the first concern, we need non-repudiation: a party
needs to be able to prove later that another party generated
some data. This means we need some form of asymmetric
signature that can be stored and authenticated long-term, for
data at rest, and it also provides end-to-end authenticity.

For the second concern, we need end-to-end encryption
between CP or EV and the eMSP, using a key which is not
known to the proxying CPO.

ISO15118 does provide non-repudiation for some of its
messages through the use of XML signatures, and end-to-
end-security for its certificate updating mechanism through the
use of public-key encryption [4]. However, this mechanism is
insufficient. The encryption is not usable for data fields in
protocol messages, and the signature structure does not allow
for partial data deletion, which we believe is needed to ensure
compliance with the General Data Protection Regulation [5].

There exists a fundamental tension between non-repudiation
and data minimization, including the right to be forgotten.
Data minimization requires that only that personal data which
is needed to fulfil a specific purpose is collected, and, once no
longer needed to fulfil that purpose, is removed. This means
that data must be deleted, anonymized, abstracted, or otherwise
made “less personal” over time [5]. However, signatures over
data become invalid as soon as the data is changed.

We analyse the tradeoffs of some possible solutions and
propose a security architecture that deals with these issues.
Our main contribution is the security architecture that provides
non-repudiation and secrecy in the presence of proxies, while
balancing concerns of eMSPs and CPOs as well as legal
concerns with regards to the possibility of data deletion im-
posed by the GDPR [5]. Our signature scheme allows for data
removal. To achieve this, we borrow concepts from Merkle
authentication trees [6], and sign the hashes of individual fields

instead of signing the combination of fields directly.
Section II provides the general signature and secrecy scheme

for the protocol ecosystem. Section III provides the steps
of protecting a document in detail, suggests existing cryp-
tographic standards to use to implement our solution, and
reviews some changes required for the protocols. Finally, we
draw some conclusions in Section IV.

II. END-TO-END SECURITY ARCHITECTURE

A complete list of our requirements is:
1) Non-repudiation: data must be authenticated in such a

way that it can be proven that a party generated it.
2) End-to-end secrecy: data being forwarded must be hid-

den from the intermediate parties.
3) The possibility for data minimization: to ensure user

privacy, data must be removable once no longer needed.
It should be possible to remove individual fields without
affecting the validity of signatures for other data fields.

4) The overhead on size of messages should be limited,
because OCPP is often run over GPRS links that may
be billed per byte.

5) Offline operation: since charge stations can operate
offline, the solution must work without an active con-
nection between all parties.

To satisfy these requirements, we need to add signatures for
non-repudiation, and authenticated encryption (AE) for end-to-
end secrecy. In this section, we first look at how to combine
signatures and encryption. Next, we look at the structure of
our signatures for achieving non-repudiation, then finally at
the AE for end-to-end secrecy.

A. Combining Signatures and Encryption

When combining AE and asymmetric signatures, an im-
portant choice is whether to sign the encrypted data (encrypt-
then-sign) or to sign the raw data and encrypt afterwards (sign-
then-encrypt if the signature itself is also encrypted, or sign-
and-encrypt if it is not). We start with this choice because
it eliminates several possible architectures. Encrypt-then-sign
has several drawbacks, but the most significant one is that
in order to verify the signature, the data has to be stored
encrypted, along with its corresponding decryption key. We
do not want to force long-term retention of ciphertexts for
several reasons:

• Either the data is stored both encrypted and decrypted, in
which case verification requires verifying the signature on
the encrypted data and decrypting and checking that the
data matches the stored decrypted version; or the data is
only stored encrypted, in which case every usage requires
decryption.

• Unless every data field is encrypted separately, this
scheme will never allow for data minimization: it is not
possible to delete part of an authenticated ciphertext;
whereas it is possible to come up with a signature scheme
that allows for deleting individual plaintexts.

So encrypt-then-sign is disregarded as an option.

The difference between sign-and-encrypt and sign-then-
encrypt is whether or not the signature is encrypted together
with the plaintext. Both these options provide non-repudiation
on the plaintext, but because not encrypting the signature
allows us to further reduce the overhead of the scheme, we
prefer sign-and-encrypt.

B. Signature solutions

Since we will sign the plaintext data, we can consider possi-
ble signature schemes without needing to consider encryption.
We will look at four such possible schemes, progressively
satisfying more of our requirements, with scheme 4) being the
solution we prefer. Schemes 1) and 2) do not satisfy require-
ment 3 (removability). The reason we describe these regardless
is that they are the straightforward ways of providing non-
repudiation, and need to be shown to be insufficient here. We
will use the example introduced in Figure 1 to clarify how the
parts of a message are signed.

1) Sign the entire message m using a single signature: The
advantage of this scheme is that it has the absolute minimum
of overhead. However, there is a large disadvantage: there is no
option of ever removing any data, as signature checks would
require the entire message. This violates requirement 3. In fact,
it would also mean that eMSPs now would have to receive
mCPO, which they currently do not, making this strictly worse
than the current situation in terms of data privacy.

2) Two signatures per message: We sign mCPO together
with mshared, and meMSP also together with mshared. Now the
CPO only has to forward meMSP and mshared. This avoids
making the situation of data privacy worse. However, deletion
of individual fields within mCPO, meMSP, and mshared is still not
possible, and the overhead is greater than with one signature.

3) Two signatures per message over hashes of fields: As
above, but instead of signing the combinations mCPO and
mshared, and meMSP and mshared directly, we sign hashes of the
individual data fields contained within them. This allows for
individual data-field deletion from mshared, mCPO, and meMSP
by simply replacing a data field with its own hash. This does
require some attention to ensure that the hash cannot be used to
recover the data, which we will describe in section II-D. This
still has the overhead of needing to transmit two signatures,
however, which can be avoided.

4) One signature per message over hashes of fields: To
further lower the overhead of scheme 3), instead of creating
two separate signatures, we can create a single signature over
two hashes: the hash of the collection of hashes of data fields
inside mCPO and mshared, and the hash of the collection of
hashes of data fields inside meMSP and mshared. Effectively, we
are signing a tree of hashes, with as root node the combination
of these two hashes, and at the leaf level the hashes of the data
fields. This is similar to a Merkle authentication tree [6]1.

The signature can be validated by anyone who knows these
two hashes. They can either arrive at them by hashing values
of data fields they know, or be provided with hashes of data

1We use a different method of authenticating the root node, we only have two
levels in the tree, and we allow a variable number of leaves per node.

fields they are not supposed to know, or even be provided with
the hash of a collection of those hashes. So in our example
the CPO would send the hash of the collection of hashes of
data fields inside mCPO and mshared to the eMSP, so that the
eMSP can verify the combined signature. As in scheme 3), the
techniques from section II-D must be applied to ensure these
hashes cannot be used to recover deleted or encrypted data.

The CPO now has to generate and send the hash for the
fields that are signed for itself, along with the signature and
data intended for the eMSP, but the overhead on the GPRS
link between charge point and CPO is minimized.

We provide a full step-by-step description of generating
a signature, and the method to deterministically rebuild the
signed document, in section III-A.

C. Encryption

Now that we have settled on a signature scheme, we can
look at how to provide end-to-end secrecy. Secrecy of data
intended for the CPO but not for the eMSP – mCPO in our
example from Figure 1 – can be guaranteed by allowing the
CPO to simply not send that part to the eMSP. However, the
parts of messages that must only be visible to the eMSP –
meMSP in our example – need encryption to guarantee secrecy.
Since we assume that the CPs are under the control of the
CPO, we can consider the CPO and CP together as a single
proxy from the view of the EV or eMSP.

Since the encryption will be short-term, until delivery at the
eMSP, we do not need to consider requirement 3. Therefore we
can simply encrypt the part of the message that needs secrecy
guarantees against the CP and CPO as a single object. This
minimizes the required overhead.

D. Preventing hash reversal through brute forcing

The concept of hashing some data to anonymize it is not
new. If personal data is hashed, and the original removed,
we believe this satisfies the data minimization and removal
requirements of the GDPR if it is impossible to reverse this
process. Generally, however, with simple hashing we run into
the problem that the pre-image space of the hash is too small.
E.g., it is easy to generate the hashes of all valid vehicle license
plates, or the hashes of all birth dates, or the hashes of all valid
credit card numbers, and then simply find the target value
among them. In order to prevent this, the hash must be salted
with enough random bits. We will use a 128-bit salt.

As long as the original data field exists, the salt for that data
field must be stored alongside it. When the data is anonymized,
the salted hash is kept, but the data field and salt are removed.
Obviously, this means we cannot use the same salt for separate
fields in a message. However, we also do not want to use
completely random salts for each individual field because all
these salts would need to be transmitted along with their fields.
Instead, we use two 128-bit seed values: one for the CPO,
included in the plaintext part of a message, and one for the
eMSP, included in the ciphertext part of a message. The reason
for using two separate seeds is because if a single seed was
used, the CPO could use that seed to try and recover the

plaintext of encrypted fields, and the eMSP could use that
seed to try and recover the part of the message that the CPO
did not forward to the eMSP.

The way the salt for a data field is generated is by simply
running a keyed hash function with the 128-bit seed as key
and the data field as input. These salts are then stored, and the
seed must be deleted. Finally, to find the hash value for a data
field, its salt is used as the key for a keyed hash function, and
the data field value as input. Upon data field deletion, the salt
is removed as well, and the hash is kept.

III. IMPLEMENTATION

This section first describes all the steps required to protect
a message, and then suggests specific cryptographic standards
to base the implementation on.

A. Protecting a message

Protecting a message consists of 10 steps:
1) Build documents to be signed from individual data fields:

We are protecting a message that consists of several fields and
which may have more than one recipient, each of which only
needs to know some of the fields. Therefore, each recipient
needs to be able to verify the signature using only the fields
it sees in plaintext. Although we do not need to duplicate
these fields in the message, we do need to build a separate
“document” for each recipient containing all those fields. From
our example in Figure 1, these would be a document consisting
of {EV id,Time,CP Location} for the CPO, and a document
consisting of {EV id,Time,Contract id,Rate} for the eMSP.

2) Add recipient and signer identifiers: Any signed mes-
sage that does not include the intended recipient is vulnerable
to an attack known as surreptitious forwarding, where the
recipient of a signed message may fool a third party into
thinking the original signer had intended the message for them.
To protect against this, and various related attacks, we always
ensure that the identifiers of the intended recipients and the
signers of the data are signed as well. Since the documents
from the example already contain the EV id (the signing party),
they now become {CPO id,EV id,Time,CP Location} and
{eMSP id,EV id,Time,Contract id,Rate}.

3) Generate and add a random seed per document:
As described in section II-D, to prevent hash rever-
sal, we need a 128-bit seed unique to each recipi-
ent. This seed must be generated by a cryptographi-
cally secure random number generator. The seed will be
signed, and added to the message. Our documents now
look like {CPO id,EV id,Time,CP Location,SeedCPO} and
{eMSP id,EV id,Time,Contract id,Rate,SeedeMSP}.

4) Encrypt specific fields: The data fields to be encrypted
from the example are the fields contained in meMSP: Contract
id and Rate. The fields in mshared must not be encrypted
because they should also be visible to the CPO. The random
seed for a recipient computed in the previous step must always
be one of the encrypted fields if any fields for that particular re-
cipient are encrypted, so SeedeMSP has to be encrypted as well.
This is to prevent a CPO or other proxy from being able to use

the techniques described in section II-D to recover plaintexts.
So the encryption here would be c = E(meMSP,SeedeMSP).

5) Add ciphertexts to the documents: To ensure that the
signature also links the ciphertexts to the overall message, the
ciphertext from the previous step is added to the document
for its recipient. So the document for our eMSP becomes
{eMSP id,EV id,Time,Contract id,Rate,SeedeMSP, c}.

6) Replace field values with hash values: As described in
section II, we will sign the hashes of the data to allow for
data removal. However, some identifier that signifies the type
of the data field should remain. E.g. if the data fields are in
key:value format, then only the value is replaced by the hash,
so that the meaning a (deleted) field had remains clear.

The hash Hk(d) of a field d is computed as

Hk(d) = keyedhash(saltd, d)

where saltd = keyedhash(seed, d)

The seed was generated in step 3, and differs depending on
which party the hash is for: SeedCPO or SeedeMSP.

The value of d is then replaced by Hk(d). Note we do not
have to send these values as part of a message, since they can
be recomputed by the receiving party.

Our eMSP document becomes DeMSP = {Hk(eMSP id),
Hk(EV id), Hk(Time), Hk(Contract id), Hk(Rate),
Hk(SeedeMSP), Hk(c)}. The CPO-document is transformed
analogously.

7) Sort on keys: Although the ordering for data fields may
not matter in the protocols, hash values are computed on the
bytes used to represent the document, for which ordering does
matter. Therefore, to ensure that these documents can reliably
be rebuilt without having to store the order of fields, we sort
the documents lexicographically on keys.

8) Generate authentication tree root from the individual
document hashes: Now we compute a hash value for each
document. These hashes are computed using a plain, unsalted
hash function. These hash values need to be added to the
message m if the document contained encrypted fields.

These document hashes are then combined to form an
authentication tree root node. They need to have the recipient-
identifier as key. So the root node for our example becomes
root = {CPO id : H(DCPO), eMSP id : H(DeMSP)}.

As in step 7, sort the root node to ensure reliable rebuilding.
9) Sort and sign the authentication tree root node: Now,

sign the root node: s = SIGN(root).
10) Add the signature, ciphertext, random seeds, and re-

quired authentication tree hashes to the message: The signa-
ture s must obviously be added to the message. The fields that
have to be encrypted can now be replaced by the ciphertext
c computed in step 4. This also adds the random seeds for
that recipient. The random seeds computed in step 3 that were
not already part of ciphertexts, so SeedCPO, are added. Finally,
the hashes from the authentication tree root that are computed
over data fields that are encrypted must be added so that the
CPO can verify the signature; which in this case is H(DeMSP).

Our final message to the CPO is given in Figure 2. The
message the CPO sends to the eMSP is given in Figure 3.

B. Signature and encryption format

The implementation of this scheme should be based on the
JSON Web Signatures [7] (JWS) and JSON Web Encryp-
tion [8] (JWE) standards, using JSON Web Algorithms [9]
and JSON Web Key [10]. The main reason for this is that
the two main protocols used in the ecosystem, OCPP and
OCPI, already use JSON for their message exchange. It is
therefore relatively simple to reuse their message definitions
when signing and encrypting data.

Another option to consider would be to use XML signatures
and encryption, as used by ISO15118 [4]. However, the CPOs
and eMSPs involved in the development of OCPP and OCPI
have consciously chosen JSON as their message format, with
OCPP making the switch away from XML with version 1.6.
We therefore believe it is more in line with the direction of
the industry to standardize on JSON-based standards.

C. Cryptographic primitives

We limit ourselves to cryptographic primitives that must be
supported for the mandatory TLS support in OCPP and OCPI.
This means we will use:

• AES-128-GCM for AE, and
• ECDHE on NIST-P-256 curve for key encapsulation.
• SHA256 and HMAC-SHA256 for (keyed) hashing.
• ECDSA on NIST-P-256 curve for digital signatures.
The encryption in step 4 is performed according to JWE [8].

We use Elliptic Curve Diffie-Hellman Ephemeral Static for key
agreement (ECDH-ES) (see [8, app. C] for an example), so
that requirement 5 (offline operation) is met.

For the keyedhash functions used in step 6, we sug-
gest using HMAC. The values in the document should be
BASE64URL-encoded 256-bit output. For the hashing in step
8, we suggest a normal hash on the BASE64URL represen-
tation of the JSON document, similar to how signatures are
computed in JWS.

The signature in step 10 is performed according to JWS [7].
We suggest using ECDSA on curve P-256 with SHA256
(see [7, app. A.3] for an example).

To add ciphertexts and signatures to documents and mes-
sages, we suggest using the compact serializations defined
by JWE and JWS. Regardless of serialization used, both
the signature and ciphertext will contain a JOSE header. If
default algorithms are used, then one could consider removing
their corresponding fields from the header transmitted to the
recipient. Having the recipient reinstate these fields themselves
before decryption and signature verification would save a few
bytes in overhead.

D. Changes to the current ecosystem

To verify a signature, a recipient needs to reconstruct its
own document, and know the hashes of the other documents.
The recipients obviously needs to store either the values of the
data fields and their salts, or the corresponding hashes. The
random seed must never be stored, as that would imply all
subsequently deleted salts could be recovered.

mshared mCPO SeedCPO E(meMSP,SeedeMSP) H(DeMSP) SIGN(root)

Fig. 2. The example message m with encrypted meMSP, seeds, and signature added, as sent to the CPO. Individual fields from m not displayed for brevity.

mshared E(meMSP,SeedeMSP) H(DCPO) SIGN(root)

Fig. 3. The part of the message that the CPO forwards to the eMSP. Note
that H(DCPO) replaces H(DeMSP) so that the eMSP can verify the signature.

All protocols need to be extended to allow for signatures,
ciphertexts, and random seeds to be transported. There also
needs to be some way to define, protocol-independently, which
data is signed and encrypted to which recipients. This will also
need to include a standardized way to identify recipients and
signers, as well as standardized data field keys.

The inclusion of a signed Time in the protocols provides
basic replay protection, but business logic is needed to e.g.
prevent an EV from having two sessions at the same time.

IV. CONCLUSIONS

There are shortcomings of the EV-charging ecosystem,
with two serious ones being lack of non-repudiation and
lack of end-to-end secrecy. Due to this, CPOs and eMSPs
cannot check or prove that a message really originates from a
particular party, and do not have a way to verify the integrity
of that information in the long term. On top of this, when
information is forwarded by an intermediate party such as
a CPO or a Clearing House, this information is readable by
that party. This is bad for customer privacy and for sensitive
corporate information such as the precise billing rate in use.

However, the ecosystem has several constraints when it
comes to introducing security measures. We need to minimize
the increase in message size, and the protocols are not all
built on the JSON. Furthermore, we need the architecture to
allow for data minimization and removal in order to be able to
comply with the GDPR. It is not trivial to add non-repudiation
and end-to-end secrecy to any existing ecosystem, especially
under these constraints. We have shown the tradeoffs of
possible solutions and described a possible solution using a
tree-based signature scheme and encryption. Inevitably, there
is a price to be paid: it is impossible to achieve security without
any overhead. Our solution adds a signature, seeds, and hashes.
An exact analysis of the overhead will be in a future technical
report accompanying this paper.

To the best of our knowledge, we are the first to suggest
using authentication trees to allow for data removal from
collections without invalidating signatures over those collec-
tions, in order to achieve GDPR-compliance in a setting where
one requires non-repudiation and end-to-end authenticity. This
is a general solution that we believe is broadly applicable
to a large number of scenarios. In particular, this situation
reminds us of blockchain processing, where there is also
tension between processing of personal data on the blockchain
and the requirements of the GDPR [11]. One solution there
is off-chain processing, where the hash of a document is the
only thing that resides on the blockchain. Our solution would

be equally applicable there; instead of using the hash of an
entire document, the root hash of a tree could be used.

For key distribution, our solution requires a PKI, but for this
we hope to reuse the ISO15118 PKI required for that protocol.
However, the restrictions ISO15118 places on its PKI may not
be compatible with our use – or, for that matter, with use in
OCPP and OCPI. Whether this is the case, and what changes
to the PKI would be necessary to facilitate this, are the subject
of future research.

We observe that the protocols we have seen are now
including TLS requirements to secure data in transit. Although
a necessary first step, we stress that protocols should also
consider securing data at the application layer, to allow for
secure data forwarding, and long-term guarantees for data at
rest. To achieve this using our solution, protocols also need to
be extended to allow for signatures, ciphertexts, and random
seeds to be transported. Furthermore, it requires a protocol-
independent catalogue of data field keys, ways of identifying
parties, and determination of of what data should be used by
which party, defining what data should be signed or encrypted
to which recipients.

The examples we used are based on a message generated by
an EV or CP, proxied by the CPO, to an eMSP. However, the
same solution can be used in other scenarios, such as when
there are multiple intermediate parties. The aforementioned
technical report will properly cover these other cases.

REFERENCES

[1] “ISO 15118-1:2013 — road vehicles – vehicle to grid communication
interface – part 1: General information and use-case definition,” ISO
Standard. [Online]. Available: https://www.iso.org/standard/55365.html

[2] “Open Charge Point Protocol,” Open Charge Alliance, Protocol
Specification. [Online]. Available: https://www.openchargealliance.org/
protocols/ocpp-20/

[3] “Open Charge Point Interface,” Nationaal Kennisplatform
Laadinfrastructuur Nederland, Protocol Specification. [Online].
Available: https://github.com/ocpi/ocpi

[4] “ISO 15118-2:2014 — road vehicles – vehicle-to-grid communication
interface – part 2: Network and application protocol requirements,” ISO
Standard. [Online]. Available: https://www.iso.org/standard/55366.html

[5] European Commission, “General data protection regulation,” 2016.
[6] R. C. Merkle, “Secrecy, authentication, and public key systems,” Ph. D.

Thesis, Stanford University, Tech. Rep. 1979-1, June 1979.
[7] M. Jones, J. Bradley, and N. Sakimura, “JSON Web Signature (JWS),”

Internet Requests for Comments, RFC 7515, May 2015. [Online].
Available: https://ietf.org/rfc/rfc7515.txt

[8] M. Jones and J. Hildebrand, “JSON Web Encryption (JWE),” Internet
Requests for Comments, RFC 7516, May 2015. [Online]. Available:
https://ietf.org/rfc/rfc7516.txt

[9] M. Jones, “JSON Web Algorithms (JWA),” Internet Requests
for Comments, RFC 7518, May 2015. [Online]. Available: https:
//ietf.org/rfc/rfc7518.txt

[10] ——, “JSON Web Key (JWK),” Internet Requests for Comments, RFC
7517, May 2015. [Online]. Available: https://ietf.org/rfc/rfc7517.txt

[11] S. van Heukelom, J. Naves, and M. van Graafeiland, “Juridische
aspecten van blockchain,” Pels Rijcken & Droogleever Fortuijn,
Whitepaper, nov 2017. [Online]. Available: https://www.pelsrijcken.nl/
actueel/publicaties/whitepaper-juridische-aspecten-van-blockchain/

