Smart metering comes with risks to privacy. One concern is the possibility of an attacker seeing the traffic that reports the energy use of a household and deriving private information from that. Encryption helps to mask the actual energy measurements, but is not sufficient to cover all risks. One aspect which has yet gone unexplored — and where encryption does not help — is traffic analysis, i.e. whether the length of messages communicating energy measurements can leak privacy-sensitive information to an observer. In this paper we examine whether using encodings or compression for smart metering data could potentially leak information about household energy use. Our analysis is based on the real-world energy use data of ±80 Dutch households.

We find that traffic analysis could reveal information about the energy use of individual households if compression is used. As a result, when messages are sent daily, an attacker performing traffic analysis would be able to determine when all the members of a household are away or not using electricity for an entire day. We demonstrate this issue by recognizing when households from our dataset were on holiday. If messages are sent more often, more granular living patterns could likely be determined.

We propose a method of encoding the data that is nearly as effective as compression at reducing message size, but does not leak the information that compression leaks. By not requiring compression to achieve the best possible data savings, the risk of traffic analysis is eliminated.

The paper is available directly or via Springer. The SecureComm 2021 presentation was pre-recorded, and the slides are also available.

The code written to arrive at these conclusions is available. It is known to run on Python 3.9 with Pandas 1.3.2.

The dataset to operate on is available from Liander N.V.:


Pol Van Aubel | Lecturer in Digital Security at Radboud University

Published

Category

research

Tags

Contact