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Abstract. Physically unclonable functions (PUFs) provide data
that can be used for cryptographic purposes: on the one hand ran-
domness for the initialization of random-number generators; on the
other hand individual fingerprints for unique identification of spe-
cific hardware components. However, today’s off-the-shelf personal
computers advertise randomness and individual fingerprints only in
the form of additional or dedicated hardware.

This paper introduces a new set of tools to investigate whether
intrinsic PUFs can be found in PC components that are not ad-
vertised as containing PUFs. In particular, this paper investigates
AMD64 CPU registers as potential PUF sources in the operating-
system kernel, the bootloader, and the system BIOS; investigates
the CPU cache in the early boot stages; and investigates shared
memory on Nvidia GPUs. This investigation found non-random
non-fingerprinting behavior in several components but revealed us-
able PUFs in Nvidia GPUs.
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1 Introduction

Commonly used consumer computing devices, such as desktop computers and
laptop computers, need a multitude of cryptographic primitives, e.g., crypto-
graphic operations with secret keys, keyed hash functions, secure randomness,
and, in some cases, remote attestation and identification capabilities. In this pa-
per we focus on two seemingly conflicting aspects: The generation of random bit
strings, which requires indeterministic behavior, and the generation of unique
identifiers, which requires deterministic behavior.

Randomness is required for several purposes in cryptography. For example,
random bit sequences are used to generate secret encryption keys and nonces
in cryptographic protocols in order to make them impossible for an attacker to
guess. Many cryptographic primitives assume the presence of a secure random
source; however, most processing chips are designed to be deterministic and
sources of randomness are rare [12, 15].

Unique identifiers can be used to deterministically derive an identity-based
cryptographic key. This key can be used for authentication and data protection.
For example, it would be possible to use these keys as an anti-counterfeiting
measure. Bloomberg Business reports in [13] that “an ‘epidemic’ of bogus chips,
routers, and computers costs the electronics industry up to $100 billion annu-
ally”, and Business Wire reports in [1] that “as many as one in ten IT products
sold may actually be counterfeit”. Having the ability to identify a chip as legiti-
mate by comparing some PUF to a database provided by the manufacturer may
help reduce this problem. As another example, it is possible to use this key for
hard disk encryption: The hard drive, i.e., the bootloader, operating system, and
user data, are encrypted with this secret intrinsic key and can only be decrypted
if the unique identifier is available. The identifier thus must be protected from
unauthorized access.

Currently, these features are provided by accompanying the device with ded-
icated hardware: randomness is offered, e.g., by the RDRAND hardware random
number generator; identification, e.g., by a Trusted Platform Module (TPM).
However, these solutions can only be used if a dedicated TPM is available in
the device or if the CPU supports the RDRAND instruction which only recently
was introduced with Intel’s Ivy Bridge CPUs. Furthermore, they do not help in
cases where the cryptographic key should be bound to the identity of a specific
chip itself.

However, for these cryptographic functionalities additional hardware is not
necessarily required: randomness as well as identification can be derived from
individual physical characteristics inherent to a silicon circuit by the use of phys-
ically unclonable functions (PUFs). PUFs can be derived from, e.g., ring oscil-
lators [10], signal delay variations [14, 23], flip-flops [16], latches [22], and static
random-access memory (SRAM) [11, 4]. While most of these require dedicated
circuits, SRAM is already used for other purposes in many general-purpose,
mass-market chips.

SRAM PUFs were initially identified in FPGAs. The PUF characteristics
of SRAM are derived from the uninitialized state of SRAM immediately after



power-up. When unpowered SRAM cells are powered up, they obtain a value of 0
with a certain probability P0, or 1 with probability P1 = 1−P0. The individual
probabilities of each SRAM cell depend on minor manufacturing differences and
are quite stable over time. Some of the cells have a probability close to 1 for either
P0 or P1 and thus tend to give the same value at every power-up. Because of this
stability, and because the pattern of this stability is different for every block of
SRAM, they can be used for fingerprinting. Other cells have a probability close
to 0.5 for both P0 and P1 and thus tend to give a different value at each power-up.
Since their behavior is unstable, they are a good source for randomness.

Before the power-up state of SRAM can be used as PUF, an enrollment phase
is required: the SRAM is powered up several times in order to measure which
SRAM cells are suitable for randomness and which for fingerprinting. For the
actual use of the SRAM PUF some postprocessing is performed, e.g., a feedback
loop can be used in order to avoid bias in the generated random bit sequence
and an error correction code in order to compensate for occasional bit errors in
the fingerprint.

At TrustED 2013, researchers demonstrated in [24] that SRAM-based PUFs
exist in various brands of popular microcontrollers, such as AVR and ARM,
which are commonplace in mobile and embedded devices. More recently [20]
used this to secure a mobile platform.

We want to investigate the possible presence of PUFs in commonly used
desktop and laptop computers. For this purpose, the two most attractive tar-
gets are the Central Processing Unit (CPU) and the Graphics Processing Unit
(GPU), since they are present in almost every desktop machine commonly in
use, and they are the chips most directly accessible by the software running on
the machine. Research into PUFs on GPUs was suggested independently by [7].

The most common CPU architecture today for large computing devices, such
as laptop computers, desktop computers, and servers, is the AMD64 architec-
ture. The AMD64 architecture, also known as x86-64 and x64, was introduced
by AMD in 1999 as a backwards-compatible successor to the pervasive x86 ar-
chitecture. SRAM is used in abundance in the caches and registers of AMD64
CPUs. Therefore, they may carry intrinsic PUFs. In [18] the authors propose
an instruction-set extension to utilize this SRAM to build a secure trusted com-
puting environment within the CPU. However, research on existing PUFs in
AMD64 CPUs appears non-existent. The obvious question is whether such PUF
capabilities are currently also exhibited by (i.e., available and accessible in) x86
and AMD64 CPUs. The documentation of these processors contains a number
of statements which suggest that — even though such SRAM PUFs may exist
— they are impossible to access from software running on those CPUs.

This paper introduces new tools to investigate whether it is indeed impos-
sible to use registers and caches of AMD64 CPUs as PUFs. The result of our
investigation is a negative one, in the sense that for the specific CPU we inves-
tigated fully (an AMD E350) we have to confirm that even at the earliest boot
stages we cannot use registers or caches as PUFs.



However, the situation is vastly different for older-generation GPUs. Many
desktop and laptop computers include hardware dedicated to processing com-
puter graphics, the GPU. The chips on this hardware are tailored toward parallel
computation for graphics processes (e.g., vectorized floating-point operations),
rather than the general-purpose computation done in CPUs. Typically, GPUs
have large amounts of SRAM. Contrary to the CPU, which provides security
features such as memory protection and therefore has clear reasons to prevent
direct access to the SRAM, GPUs often expose their SRAM directly to the
programmer, and also do not have the same reasons to clear the SRAM after
reset. GPU memory and registers leak sensitive data between processes, as ob-
served in [21] and later in [8]; the absence of memory zeroing between processes,
where sensitive data may be handled, suggests that zeroing to prevent reading
uninitialized memory is also absent.

We therefore think that it will be easier to find and read uninitialized SRAM
on GPUs than on CPUs. In this paper we explore the possibilities for this on
the Nvidia GTX 295 and find that it is indeed possible to extract enough unini-
tialized SRAM to build PUFs. On the other hand, we did not find PUFs on a
newer generation GPU.

To enable reproducibility of our results, and to allow other researchers to in-
vestigate other CPUs, we place all our modifications to the software described in
this paper into the public domain. The source code and patches in appendix A are
available at https://www.polvanaubel.com/research/puf/x86-64/code/.

This paper is structured as follows: In the next section, we describe our
experimental setup for the CPU, i.e., the AMD64 processor architecture and
our test mainboard, the ASRock E350M1. In Section 3 we describe how we
investigate if CPU registers can be accessed sufficiently early in the boot process
in order to read their power-on state and use them as SRAM PUFs. In Section 4
we investigate the suitability of the CPU cache as SRAM PUF during BIOS
execution when the processor is in the cache-as-RAM mode. In Section 5 we
describe the experimental setup for the GPU, i.e., the Nvidia GTX 295 GPU
architecture. Finally, in Section 6 we describe the experiments conducted on the
GPU. Finally, in Section 7 we discuss our results.

2 Experimental setup for the CPU

Our main experimental setup consisted of a single mainboard with an AMD64
CPU.

AMD64 architecture. Computers based on the x86 and AMD64 architectures
have a long history, tracing back to the IBM PC. The most common setup today,
visualized in Figure 1, is based on a motherboard that has a socket for an AMD64
architecture CPU, a memory controller and slots for Random Access Memory,
several communication buses such as PCI and PCI Express and associated slots
for expansion cards, non-volatile memory for storing the system’s boot firmware,
and a “chipset” tying all these together. This chipset consists of a Northbridge,
handling communication between the CPU and high-speed peripherals such as
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Fig. 1: Schematic of the AMD64 motherboard architecture.

graphics hardware and main memory, and the Southbridge, handling everything
else, with the Northbridge as an intermediary to the CPU.

Finally, there is the Super I/O chip. This chip condenses many I/O features
which were traditionally handled by different circuits into one chip. This is the
reason that the current iteration of AMD64 motherboards still supports many
features found on boards from 20 years ago, such as serial port I/O, floppy-disk
drives, and parallel ports, next to relatively new features such as Serial ATA
and PCI Express. However, some of these features might not be exposed to the
user: The Super I/O chip that is used to drive these subsystems often supports
the entire range of “old” functionalities, but only those which the motherboard
manufacturer deems worthwhile to offer are actually exposed through sockets
on the board. The serial port, for example, is still exposed as a header on most
boards, or at least as a solder-on option. Since these are relatively simple I/O
devices, they are often the first to be initialized after system startup and can be



used for output of, e.g., system diagnostics during the early boot stage before
the graphics hardware has been initialized.

In recent years, functions the Northbridge used to handle, such as memory
control and graphics-hardware control, were integrated into the CPU. This was
done to reduce overhead and speed limitations caused by having to go through
an intermediary chip. Since this lifted most of the high-speed demands from the
Northbridge, this development has caused manufacturers to integrate the few
remaining functions of the Northbridge and the functions of the Southbridge
into a single chip. The main principles of operation of the motherboard, however,
remain the same.

Test mainboard. Our main test board is the E350M1, manufactured by AS-
Rock. On it runs an AMD E-350 APU (Accelerated Processing Unit, a package
embedding a CPU and graphics controller) which was first manufactured in 2011,
with an AMD A50M chipset. It has an exposed serial port header and a socketed
4 MiB Winbond 25Q32FVAIQ NVRAM chip for the UEFI or BIOS firmware.
The board has on-board flash capabilities for this chip. The form factor is mini-
ITX. The E-350 APU itself has two processor cores, with 32 KiB level-1 data
cache, 32 KiB level-1 instruction cache, and 512 KiB of level-2 cache per core.

As explained later in Section 3.4, the main reasons for picking this mainboard
are that it supports a fairly recent AMD CPU, has a socketed NVRAM chip,
and is supported by the open-source BIOS implementation coreboot [26].

The integration of graphics hardware, combined with the small form factor,
make this a board suited for general-purpose home computing and multimedia
computers.

We acquired two sets of replacement NVRAM chips. The first set consisted
of five MXIC MX25L3206EPI. These chips closely match the original chip’s
specifications, yet are from a different manufacturer. They failed to boot the
board with anything other than the original UEFI firmware. The second set
consisted of two Winbond 25Q64FVSIG chips. These chips are almost identical
to the original, with only two major differences: they have twice the storage size
(8 MiB), and a different form factor (SOIC8 instead of DIP8). Therefore, they
required an adapter circuit to fit the form factor. However, these chips served
the purpose of booting the board with modified firmware. The three different
types of chips can be seen in Figure 2. For flashing these chips under Linux, we
used the open-source software flashrom.

For mass storage (bootloader and operating system) we used a simple USB
stick. For I/O we used a normal setup of keyboard, mouse and screen, but
also attached a serial socket to the serial port header, and used a serial-to-USB
adapter to get serial output from BIOS and bootloader. The test setup can be
seen in Figure 3.

Finally, power was supplied by a normal ATX power supply, and we pow-
ered, unpowered and reset the board by shorting the corresponding pins with a
metal tab. Measurements were taken by manually powercycling the board and
reading the measurement output from screen (kernel) or serial output (BIOS
and bootloader).



Fig. 2: Chips used on the E350M1 motherboard. Left: the original Winbond
25Q32FVAIQ. Center: The unsuitable replacement MX25L3206EPI. Right: The
working replacement Winbond 25Q64FVSIG

Fig. 3: Photograph of the E350M1 motherboard.

3 CPU registers

There are indications that both Intel and AMD use SRAM to build the register
banks present in their CPUs [5], although this is not explicitly mentioned in
the specification charts for their CPUs. The register banks contain, among oth-
ers, general-purpose registers, MMX vector registers, and XMM vector registers.
Of these, the general-purpose registers are likely to be heavily used from the
moment of system start, since many of them are required to be used in basic
instructions. The XMM registers, however, can only be accessed by the use of
the Streaming SIMD Extensions (SSE) instruction set, which is unlikely to be
used by the system startup code. They are therefore good candidates to check
for PUF behavior.

However, the AMD64 Architecture Programmer’s Manual Volume 2: System
Programming [2] contains several statements which give reason to believe that
it would be extremely hard, if not outright impossible, to get to the power-on



state of the register banks. For instance, Table 14-1 of that document shows the
initial processor state that follows RESET or INIT. The table lists a deterministic
state for all the general-purpose registers, most of which get initialized to 0.
The 64-bit media state (MMX registers) and the SSE state (XMM registers)
are also initialized to 0 after RESET. After INIT, however, they are apparently
not modified, but since it is not possible to initialize a processor without going
through power-on RESET at the beginning, this does not help either. Volume 1
of the Programmer’s Manual also states that, upon power-on, all YMM/XMM
registers are cleared. This confirms the conclusions drawn from the table in
Volume 2.

Experimental results show that the register banks are indeed not usable as
PUFs on our testing machines. To explain this conclusion, we will describe the
x86/AM64 boot process, and discuss how to dump the state of the XMM registers
during different stages of the boot procedure.

3.1 Boot process

The boot process for an AMD64-based machine consists of several steps. The
Southbridge loads the initial firmware code (BIOS or UEFI), and the processor
starts executing from the RESET vector (address 0xFFFFFFF0). This code per-
forms CPU initialization and initialization of other mainboard components such
as the Super-IO chip, responsible for input-output through devices such as the
serial port, and the memory controller, responsible for driving and communi-
cating with main memory. Next, it searches for all bootable devices and finally
loads the bootloader from the desired location.

The bootloader allows the user to select between different operating systems,
loads the desired operating-system kernel and any other required resources, and
then hands over control to this kernel. From this moment on the operating system
is in control.

One of the main differences between BIOS and UEFI boot options is that
a BIOS system will, in order to start the bootloader, drop the CPU back into
16-bit real mode, whereas a UEFI system can directly load the bootloader in
32-bit protected or 64-bit long mode. We have looked at systems using the BIOS
model, but our findings apply to the UEFI model as well since the UEFI model
is not different from the BIOS model in how it initializes the CPU, Super-I/O,
and memory controller. For the rest of this paper, when discussing bootloader
and boot firmware, we assume the BIOS model.

This division of stages in the boot process is also reflected in the complexity
of the software running in each stage. The BIOS is small, very specialized, and
designed to work for specific hardware. The bootloader, in turn, is somewhat
larger, somewhat more portable, but still has a very limited set of tasks. Finally,
an operating-system kernel is often large and complex, and designed to deal
with many different hardware configurations and many different use cases. If
PUF behavior can easily be exposed at the operating system level, without
edits to the underlying layers, this enables wide deployment with relatively little
development. If, however, the BIOS needs to be edited, then deploying a system



using these PUF results would require edits to each mainboard that the system
will use. The tradeoff here is that a solution which does not require edits to
the BIOS and bootloader would implicitly trust these components, whereas a
solution where the BIOS needs to be edited would be able to work with a much
smaller trusted base system.

Because of these considerations, we decided to explore all three options. In the
following sections, we first look at the kernel level, before going to the bootloader,
and finally to the BIOS.

3.2 Kernel

The operating-system kernel is started by a bootloader in our test setup. We
can only be sure to read potentially uninitialized values from registers if we read
the state of the registers as early as possible, before they are used either by the
operating system or by user processes. Thus, the register state must be stored
during the startup-process of the operating system. This requires us to modify
the source code of the operating-system kernel. Therefore, the obvious choice is
to use an open-source kernel. We decided to use Linux.

Our code that reads out and displays the contents of the XMM registers
consists of two parts: a kernel patch that stores the content of the XMM registers
right after those registers have been made available and a kernel module that
gives access to the stored data after the boot process has been finished.

Kernel patch. Before XMM registers can be accessed, the processor must
be switched to the correct mode using the CR0 and CR4 control registers [2,
Page 433]. This happens in fpu_init in file arch/x86/kernel/i387.c of the
Linux kernel. Before this function is called, the kernel does not have access to
the XMM registers. Thus, it is not possible that the XMM registers have been
used before within the kernel and that potential PUF data in those registers has
been overwritten by the kernel.

We are storing the data of all XMM registers into memory right after the
control registers have been set, in order to ensure that our code is the first kernel
code that accesses the registers. We use the instruction FXSAVE in order to save
all the FPU and XMM registers to memory at once; the kernel patch adds only
5 lines of source code.

Kernel module. Displaying or permanently storing data in the very early phase
of the kernel boot process is tedious. Therefore, we simply store the data at boot
time and make it available to user space applications once the boot process is
finished via a kernel module. The kernel module provides entries (one for each
CPU core) in the proc file system that can simply be read in order to obtain
and display the XMM register data.

Results. We tested our code on two AMD64-based machines, first on a surplus
office machine with an AMD Athlon 64 X2 3800. Later, we re-ran the tests on
the dedicated test-board with an AMD E350 CPU described in Section 2. Both
CPUs are dual-core CPUs. On both boards, all XMM registers on the second



CPU core contained all 0. The registers on the first CPU core contained some
data, some of it stable over several reboots, some of it varying. However, some
of the registers obviously contained ASCII code, e.g., the strings “GNU core”,
“GB.UTF-8”, and “: <%s>”. This indicates that the XMM registers have been
used by the boatloader — if not directly in the source code then maybe by C
standard-library calls like memcpy, memcmp, or string operations; disassembling
the GRUB boatloader shows many occurrences of vector instructions on XMM
registers.

Thus, at the time of kernel startup, the initial status of the registers has
been modified and they cannot be used as PUF. Therefore, in the next step we
investigated the status of the XMM registers before the kernel is started, i.e., in
the early stages of the bootloader.

3.3 GRUB

The bootloader is a user-controlled piece of software, often installed into the
boot sector of one of the hard disk drives. However, it runs still fairly early in
the boot process. This combination of factors makes it a good candidate for
attempting to find uninitialized SRAM in the XMM registers of a CPU.

GRUB patch. GRUB (GRand Unified Bootloader) is a free open-source boot-
loader for AMD64 systems [9]. It is one of the most popular bootloaders used
to boot Linux systems and fairly easy to modify. After GRUB starts, it switches
the CPU back into 32-bit protected mode as soon as possible. Then it does some
more machine initialization and checks, during which it initializes the terminal
console, either over the VGA output or serial output. Next, it loads all the mod-
ules it requires, loads its configuration, and displays the boot menu for the user
to select an operating system.

In the previous section, we mentioned that disassembly of GRUB shows many
uses of the XMM registers. However, at the moment when GRUB starts, the CPU
is still in 16-bit real mode. Therefore no XMM registers are available to be used.
In order to be early enough to read uninitialized registers, we changed the GRUB
source code so that immediately after machine and terminal initialization, we
enable access to the XMM registers ourselves, then read the register contents of
the XMM registers XMM0 to XMM7. Next, we write them to the terminal. First we
allocate a block of memory with a size of 1024 bits (128 bits for each register)
and fill it with a known pattern. Next, we enable SSE-instructions on the CPU in
the first asm-block. Immediately after that we copy the contents of each register
to the memory region allocated before, in the second asm-block. We do not use
the FXSAVE instructions here, rather, we perform a single MOVUPD instruction for
each register we want to store. Finally, we write the values from memory to
the console. Disassembly of the resulting GRUB image shows that, indeed, our
reading of the XMM registers is the first use of these registers within GRUB.

Results. Again, we tested our code on the surplus office machine described above
and later also on the dedicated test mainboard. Unfortunately, on the first test-
machine the contents of all registers except for XMM0 were 0. XMM0 was filled with



a static value which turned out to be a fill-pattern used in the initialization code
of main memory in AMD-supplied BIOS code. These values were stable over
repeated tests. This indicates that at this point the registers have been zeroed
and that at least register XMM0 has been used already by the BIOS. For the same
reasons as before, this means that at this point the XMM registers cannot be
used as PUF, neither for randomness nor for fingerprinting. Therefore, as the
next step we turned to the BIOS in the attempt to read data usable as a PUF
from the registers.

3.4 Coreboot

As stated before, the BIOS is the first code run by the CPU. It detects and
initializes the hardware and firmware, puts the CPU in the correct mode, runs
software that makes it possible to configure the BIOS itself, and loads and runs
the bootloader. The BIOS is the earliest step in the boot process that can be
controlled, unless one has access to the CPU microcode.

The BIOS is loaded from an NVRAM chip. Often, its machine code is read-
able by reading out the NVRAM chip or by dumping the contents of BIOS
updates. However, it is not easy to edit the BIOS code without access to its
source code, which most mainboard vendors do not provide. Luckily, it is not
necessary to reverse-engineer the closed-source BIOS provided by the mainboard
vendors; there is an alternative: coreboot, formerly linuxBIOS, is a free open-
source machine-initialization system [26]. It is modularly built so that it can
function as a BIOS, a UEFI system, or in several other possible configurations.

Mainboard selection. Coreboot, despite its modularity, needs to be ported to
every individual new mainboard for which support is desired. This is caused by
subtle differences in hardware configuration, and is even required if a board uses
chips which are all already supported by coreboot. Instead of porting coreboot
to the AMD Athlon 64 X2 3800 mainboard mentioned before that we already
had “in stock”, we decided to acquire a board that coreboot had already been
ported to by the community; our first requirement for the board was that it
must support modern AMD64 CPUs.

Since the BIOS resides in an NVRAM chip on the mainboard, the only
way to install a new BIOS is by flashing this chip. Most modern mainboards
have this flash-capability built into the mainboard itself and software running
in the operating system can flash the BIOS in order to enable user-friendly
BIOS updates. However, should a modification to the BIOS source code render
the system unbootable, this on-board capability will obviously not be available.
Therefore an additional requirement was that the mainboard that we were going
to use must have a socketed NVRAM chip rather than one soldered onto the
board. This would allow us to boot the board with a “good” chip, then switching
the chips and re-flashing the bad one.

Because of these requirements, our choice was the ASRock E350M1 main-
board described in Section 2.



Coreboot patch. The coreboot boot process begins the same as described in
Section 3.1: the Southbridge loads the coreboot image, then the CPU starts
processing from the RESET vector. The first thing coreboot does is to put the
CPU into 32-bit protected mode. It then does some additional CPU initializa-
tion, initializes the level-2 cache as RAM for stack-based computing, initializes
the Super-IO chip for serial port output, and then starts outputting diagnostic
and boot progress information over the serial port. It initializes the memory
controller, and eventually it loads the payloads stored in NVRAM, which can
vary: a VGA ROM to enable VGA output, a BIOS or UEFI implementation, an
operating-system kernel directly, or several other possibilities.

As soon as the cache-as-RAM initialization is done, memory is available to
store the values of the XMM registers. We changed coreboot similar to how we
changed GRUB. First, we allocate a buffer of 1024 bits of memory and fill them
with a known pattern. Then we copy the contents of the XMM registers to the
buffer. At this point, there is no interface initialized to send data out of the
CPU, except for a very rudimentary POST code interface which can send one
byte at a time and requires a special PCI card to read it. This is inconvenient
at best, so we allow coreboot to continue machine initialization until the serial
port is enabled. Then, we write the values previously read from the registers out
over the serial console.

Results. This time, all the registers contain 0 on our test machine. Manual
analysis of a disassembly of the coreboot firmware image flashed to the device
shows that XMM0 and XMM1 are at some earlier point used to temporarily store
data, but XMM2–XMM7 are not used before being copied by the modified code.
This matches the documentation, and implies that there is no way to get access
to uninitialized SRAM state by using XMM registers.

4 CPU cache

The AMD64 architecture defines the possibility of several levels of cache, while
leaving the exact implementation to manufacturers of actual CPUs. As men-
tioned before, caches are usually implemented as SRAM. Therefore, reading the
bootup-state of cache could be another source of PUF behavior.

4.1 Cache operation

During normal operation of an AMD64-based machine, main memory is avail-
able through a memory controller. The use of caches speeds up memory accesses
by granting the CPU fast read and write access to recently touched data which
would otherwise have to be fetched from main memory. On the AMD64 architec-
ture, the data stored in caches is always the result of a read from main memory
or a write to main memory; caches act as a fast temporary buffer. It is not pos-
sible for software to explicitly write to, or read from, cache. If software needs to
use data from a certain address in main memory, the corresponding cache line is
first loaded into cache, then accessed and potentially modified by the software,



and eventually modifications may be written back to main memory. Thus, the
cache contains a copy of the data that should be in main memory, but that might
not be the exact same data as what is in main memory because the writeback
has not happened yet. When exactly reads from and writes to main memory are
performed, depends on the memory type assigned to the section of main memory
being handled. For the purposes of this paper, we will only examine the memory
type writeback [2, Page 173].

On multicore systems and cache-coherent multi-socket systems, another prob-
lem is that the data in cache itself might not be the most up-to-date copy of
the data. Because of this, the cache controller must keep track of which data
is stored in which location (a specific cache or in main memory) at what time.
In order to keep track of this, the MOESI protocol is used that allows cache
lines to be in one of five different states: Modified, Owned, Exclusive, Shared,
and Invalid [2, Pages 169–176].

Many modern AMD64 CPUs support what is known as cache-as-RAM op-
eration. This uses the level-2 cache in each CPU core to enable stack-based
computing during the early boot process. At this point the memory controller
has not yet been initialized, so main memory is unavailable [3, Pages 32–33].
In cache-as-RAM operation mode, the memory state writeback is assigned to
all available memory addresses. After the CPU received a RESET signal, the en-
tire cache is in the state Invalid. In writeback mode Invalid state, any memory
read will trigger a “read miss”, which would normally cause a read from mem-
ory into cache, and put the cache line in either Shared or Exclusive state. Any
memory write will cause a “write miss”, since the line needs to be modified and
held as Modified in cache. Therefore, a write miss would normally cause a read
from memory, modify the corresponding data, and put the cache line in Modi-
fied state [2, Pages 169–171]. However, the documentation does not state what
happens when these misses are encountered during the early boot process when
the memory controller is still disabled. It could be the case that any read from
main memory will be handled within the CPU to return some static value, e.g.,
zero. It could also be the case that the cache is not actually modified on a read,
in which case reading a block of memory might give us the power-on state of the
SRAM cells in the cache.

4.2 Coreboot

The cache-as-RAM initialization code used by coreboot, written by AMD, con-
tains instructions to explicitly zero out the cache area used as stack. Further-
more, a comment on lines 51–58 of src/cpu/x86/16bit/entry16.inc (one of
the source files used to define the earliest stages of the coreboot boot process
before the CPU is switched to 32-bit protected mode) implies that coreboot used
to explicitly invalidate the cache at that point, but no longer does for perfor-
mance reasons. This could imply that power-on values from the cache are indeed
readable after cache-as-RAM initialization, if the instructions to explicitly zero
the cache are removed.



Coreboot patch. To test this, we replaced the instructions zeroing out the
cache with instructions filling it with a known pattern. Then we allowed the
boot process to continue until initialization of the serial console. As soon as the
serial console was available, we output the entire contents of the memory region
used as stack, and confirmed that the known pattern was there. This ensures that
we were modifying the correct code, and that the values were not being changed
between the initialization of the cache and the output. After this test, we simply
removed the instructions writing the pattern entirely to get the power-on state
of the SRAM. These patches to coreboot should be applied separately from the
earlier, register-related patches.

Results. Unfortunately, as in the previous experiments, the output consisted
mostly of zeroes, and the parts that were non-zero were clearly deterministic
and at the top of the memory region. This part of the memory most likely
is the region of the stack that already has been used by function calls before
and during serial console initialization. Therefore, also cache-as-RAM does not
provide access to SRAM in bootup state; the CPU transparently takes care of
wiping the cache before the first read access.

5 GPU experimental setup

Our experimental setup for the GPUs consisted of several modern desktop ma-
chines, each running one or two GPU cards based on the Nvidia GTX 295. We
used the CUDA SDK version 4.0.

Graphics Processing. Graphics cards used to provide only operations for
graphics processing. However, in the past decade, a shift has taken place tailored
to expose this power, providing a more general-purpose instruction set along
with heavily vectorized, parallel computation. Because of this, non-graphical
programs have started to utilize this power by offloading certain computations
to the GPU that would previously have been done by the CPU.

Graphics programming is usually done using various high-level graphics APIs,
such as OpenGL and DirectX. However, the more general-purpose use of their
operations is done through other semi-portable high-level programming inter-
faces, such as CUDA [6] and OpenCL. The CPU, and therefore any normal user
program, does not have direct access to the GPU’s SRAM memory. Further-
more, the public documentation for the actual low-level instruction sets is not
as extensive as for CPUs. For example, one of the ways Nvidia card program-
ming is done is by writing programs in CUDA, which then compiles into still
semi-portable, high-level, “assembly-language-like” PTX [19], still hiding most
of the hardware details. The PTX is in turn compiled by the GPU card’s driver
to a binary “kernel” which is run on the card itself.

On the other hand, GPUs evolved as single-user devices, dedicated to pro-
cessing (non-sensitive) graphics data, without many of the security features of
CPUs. Considering those features, such as virtual memory, address space sepa-
ration, and memory protection, it is unsurprising that the CPU indeed clears its



SRAM and makes it unavailable to any outside applications. Since GPUs do not
have to take this into consideration, it is possible that there will be no logic to
clear the SRAM or make it unavailable to outside applications. On top of that, in
contrast with their instruction sets, GPU hardware tends to be documented as
well as or better than CPUs. There also exists research into the non-documented
aspects of the architecture, see e.g. [25].

Nvidia GTX 295 GPU card. The Nvidia GTX 295 GPU card contains two
graphics processing devices. Each of these devices has 896MiB of DDR3 RAM
— “global memory” — and 30 multiprocessors (MPs). Each of the MPs, in turn,
has 8 arithmetic logic units (ALUs), 16384 32-bit registers, and 16KiB SRAM
— “shared memory”. Nvidia GPUs can be programmed for general-purpose
computing using the CUDA framework.

6 GPU multiprocessor shared memory

Even though more SRAM is available in the registers, the shared memory SRAM
is easier to access. The main cause of this is that CUDA and PTX make it easy
to access the shared memory through a linear address space, but there is no
real assembly language provided by NVIDIA that would allow to directly access
registers.

Using Nvidia’s CUDA language, we developed an SRAM readout tool. CUDA
hides most of the hardware details, but it provides enough control to access
specified locations in SRAM. The tool works by copying the shared memory
SRAM to global memory DRAM, after which the code running on the host
CPU reads this data. The actual size of the SRAM is 16384 bytes, but the first
24 bytes are reserved for kernel parameters (e.g., the thread id) and for the
function parameters passed to the kernel. Thus, only the latter 16384− 24 bytes
can be accessed from CUDA code. The resulting loop doing this is very simple:

#define MAX (16384 - 24)

__global__ void read(unsigned char *data)

{

__shared__ unsigned char d[MAX];

for (int i = 0; i < MAX; i++) {

data[blockIdx.x * MAX + i] = d[i];

}

}

Results. The power-on SRAM contents appear to contain large amounts of
random data. Powering off and on again produces a similar, but not identical,
SRAM state. Overwriting the SRAM state and resetting the GPU again produces
a similar state, as if the SRAM state had never been overwritten. A different
GTX 295 GPU has a different power-on SRAM state. These observations were
consistent with what one would expect from uninitialized SRAM.



In the end, we were able to read out 490800 bytes out of the 491520 bytes of
shared memory in each GPU. We repeated this experiment on 17 devices.

Figure 4 shows an example of a GPU SRAM PUF from device 0, MP 0
on the machine “antilles0”. We took 17 measurements, each after a power-off
reboot. The figure shows different colors for each bit of the first 64 × 64 bits
of the SRAM; white pixels indicate that a bit was 1 on each power-up, black
pixels indicate that the bit was 0; different shades of red indicate the ratio of 1
versus 0 on each power-on. Thus, the corresponding bits of black/white pixels
can be used to identify the SRAM and thus the device, while the bits of the red
pixels can be used to derive randomness from the device. The first accessible 64
bits are allways 0 and thus appear to be cleared on kernel launch when kernel
parameters are copied to the SRAM.

Figure 5 shows the within-class Hamming distance from 18 different traces
taken from each MP of device 0 on the machine “antilles2”. Each measurent is
compared to the “enrollment” measurement 0. The Hamming distance for each
comparison is around 5% which indicates that the device can be identified with
high accuracy. Figure 6 shows the between-class Hamming distance pairwise
between all of our measurements. The Hamming distance varied between 40%
and 60%, which again indicates that the difference between distinct devices is
high and that each individual device can be recognized accurately. In particular,
there is no general bias that maps certain bits of the SRAM to the same value
for all devices. These measurements and analysis show no obstacle to building a
usable PUF on top of these devices.

Fig. 4: antilles0, device 0, MP 0, 17 traces.



Fig. 5: Within-class Hamming distance for antilles2, device 0, MPs 0–29.

Fig. 6: Between-class Hamming distance for all devices.

7 Discussion

Although we did not find a way to access and read either CPU registers or CPU
caches before they are initialized, technically it would be possible to use them as
SRAM PUFs. Thus, CPU vendors could enable these hardware features for the
use as PUFs probably with relatively small modifications to their chip designs.

As we explained, the situation seems to be different with at least older-
generation GPUs, yielding a usable PUF on the Nvidia GTX 295.



However, these SRAM PUFs in both CPU and GPU, if available to be read by
software either within the BIOS code or in the bootloader or operating system,
would not be protected against an attacker with any kind of root access to
the machine. In case the attacker is able to read the PUF, he would be able to
reproduce the fingerprint and to impersonate the machine. In case the attacker is
able to deploy malware in the early boot process, he would be able to manipulate
the PUF state and thus he could influence, e.g., random number generation based
on the PUF. Strong software security is thus a prerequisite for truly secure use
of these PUFs.

Our explorations on the GPU encountered challenges when we upgraded to
a different version of the Nvidia GPU drivers. These drivers appeared to clear
large amounts of GPU SRAM, presumably in an effort to reduce the amount
of undocumented behavior exposed to GPU applications. Explicit memory ze-
roing is among the recommended countermeasures against data leakage in [8].
Unfortunately, this also prevents using it as a PUF. Furthermore, when we ran
the same tests on a newer generation Nvidia card, we were no longer able to
retrieve the SRAM data. On ATI cards, we were never able to read uninitialized
SRAM data. This suggests that here, vendors are actually trying to suppress
this PUF-like behavior in their devices.

If CPU and GPU vendors decide to provide access to uninitialized SRAM
state for use as PUFs, further protection of their data is required. However, data
leakage should be prevented, as explained in [8], so maybe direct access is not
the best solution. An instruction-set extension as proposed in [18], where the
PUF data never leaves the CPU, could also be applied to GPUs and seems to
be the best way to implement this.

We have shown that the embedded SRAM in AMD64 CPUs, at least for the
model we tested, is indeed not usable as a PUF. For this, we have made modifi-
cations to several open-source software packages. We release these modifications
into the public domain; they are available online. We have also shown that PUFs
are present in the Nvidia GTX 295 graphics card, and conclude that they may
be present in other graphics devices.

7.1 Future work

We have noticed the following phenomenon on a Lenovo ThinkPad X1 Carbon
laptop, 2014 edition, with an Intel Core i7-4600U CPU and a 2560×1440 screen;
note that this CPU contains a capable GPU embedded inside the CPU. After
the BIOS boot stage, approximately the lower third of the screen is temporarily
filled with what appear to be randomly colored pixels. This indicates possible
presence of a PUF inside the video buffer on the GPU. The obvious next step is
to use high-resolution photographic equipment to check the Hamming distance
between the colors after multiple power cycles.
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A Software patches

The kernel patch is shown in Listing 1, the kernel module in Listing 2. The
GRUB patch is shown in Listing 3. The coreboot patch to output the registers
is in Listing 4, and the coreboot patch to output the stack space in cache is in
Listing 5.

Listing 1 The kernel patch for Linux Kernel version 3.15.7 to store the XMM
registers.

1 diff --git a/arch/x86/include/asm/i387.h b/arch/x86/include/asm/i387.h
2 index a850b4d..13cd1d1 100644
3 --- a/arch/x86/include/asm/i387.h
4 +++ b/arch/x86/include/asm/i387.h
5 @@ -15,6 +15,8 @@
6 #include <linux/sched.h>
7 #include <linux/hardirq.h>
8
9 +DECLARE_PER_CPU(struct i387_fxsave_struct, puf_data);

10 +
11 struct pt_regs;
12 struct user_i387_struct;
13
14 diff --git a/arch/x86/kernel/i387.c b/arch/x86/kernel/i387.c
15 index fa4ea09..48e1c00 100644
16 --- a/arch/x86/kernel/i387.c
17 +++ b/arch/x86/kernel/i387.c
18 @@ -157,6 +157,9 @@ static void __cpuinit init_thread_xstate(void)
19 xstate_size = sizeof(struct i387_fsave_struct);
20 }
21
22 +DEFINE_PER_CPU(struct i387_fxsave_struct, puf_data);
23 +EXPORT_PER_CPU_SYMBOL(puf_data);
24 +
25 /*
26 * Called at bootup to set up the initial FPU state that is later cloned
27 * into all processes.
28 @@ -188,6 +191,11 @@ void __cpuinit fpu_init(void)
29 cr0 |= X86_CR0_EM;
30 write_cr0(cr0);
31
32 + asm volatile("FXSAVE %0\n" : "=m"
33 + (per_cpu(puf_data, smp_processor_id()))); // save fpu registers
34 +
35 + asm volatile("clts;"); // make sure to leave no trace
36 +
37 /*
38 * init_thread_xstate is only called once to avoid overriding



Listing 2 The kernel module for Linux Kernel version 3.15.7 to access the stored
register values.

1 #include <linux/module.h>
2 #include <linux/proc_fs.h>
3 #include <linux/seq_file.h>
4 #include <asm/i387.h>
5
6 static struct proc_dir_entry* pufdata_file;
7
8 static int pufdata_show(struct seq_file *m, void *v)
9 {

10 int i, cnt;
11
12 for_each_cpu(i, cpu_present_mask) {
13 seq_printf(m, "CPU %i:\n", i);
14
15 for (cnt = 0; cnt < 64; cnt += 4)
16 seq_printf(m, "%08x %08x %08x %08x\n",
17 per_cpu(puf_data, i).xmm_space[cnt + 3],
18 per_cpu(puf_data, i).xmm_space[cnt + 2],
19 per_cpu(puf_data, i).xmm_space[cnt + 1],
20 per_cpu(puf_data, i).xmm_space[cnt + 0]);
21
22 seq_printf(m, "\n");
23 }
24
25 return 0;
26 }
27
28 static int pufdata_open(struct inode *inode, struct file *file)
29 {
30 return single_open(file, pufdata_show, NULL);
31 }
32
33 static const struct file_operations pufdata_fops = {
34 .owner = THIS_MODULE,
35 .open = pufdata_open,
36 .read = seq_read,
37 .llseek = seq_lseek,
38 .release = single_release,
39 };
40
41 static int __init pufdata_init(void)
42 {
43 pufdata_file = proc_create("pufdata", 0, NULL, &pufdata_fops);
44
45 if (!pufdata_file) {
46 return -ENOMEM;
47 }
48
49 return 0;
50 }
51
52 static void __exit pufdata_exit(void)
53 {
54 remove_proc_entry("pufdata", NULL);
55 }
56
57 module_init(pufdata_init);
58 module_exit(pufdata_exit);



Listing 3 The GRUB patch for GRUB version 2.02-beta2 to output the XMM
registers.

1 diff --git a/grub-core/kern/main.c b/grub-core/kern/main.c
2 index 9cad0c4..0cbd8f0 100644
3 --- a/grub-core/kern/main.c
4 +++ b/grub-core/kern/main.c
5 @@ -29,6 +29,7 @@
6 #include <grub/command.h>
7 #include <grub/reader.h>
8 #include <grub/parser.h>
9 +#include <grub/time.h>

10
11 #ifdef GRUB_MACHINE_PCBIOS
12 #include <grub/machine/memory.h>
13 @@ -269,11 +270,47 @@ grub_main (void)
14
15 grub_boot_time ("After machine init.");
16
17 + unsigned char puf_result[128];
18 + int puf_i;
19 + for (puf_i = 0; puf_i < 128; ++puf_i) {
20 + puf_result[puf_i] = 0xca;
21 + }
22 + asm(
23 + "mov %%cr0, %%eax;"
24 + "and $0xFFFB, %%ax;" /* Clear coprocessor emulation CR0.EM */
25 + "or $0x2, %%ax;" /* Set coprocessor monitoring CR0.MP */
26 + "mov %%eax, %%cr0;"
27 + "mov %%cr4, %%eax;"
28 + "or $0x0600, %%ax;" /* Set CR4.OSFXSR and CR4.OSXMMEXCPT at the same time */
29 + "mov %%eax, %%cr4;"
30 + :::"%eax","%ax"
31 + );
32 + asm(
33 + "movupd %%xmm0, 0(%0);"
34 + "movupd %%xmm1, 16(%0);"
35 + "movupd %%xmm2, 32(%0);"
36 + "movupd %%xmm3, 48(%0);"
37 + "movupd %%xmm4, 64(%0);"
38 + "movupd %%xmm5, 80(%0);"
39 + "movupd %%xmm6, 96(%0);"
40 + "movupd %%xmm7, 112(%0);"
41 + ::"r" (puf_result)
42 + );
43 + for (puf_i = 0; puf_i < 128; ++puf_i) {
44 + grub_printf ("%02x ", puf_result[puf_i]);
45 + if (puf_i % 16 == 15) {
46 + grub_printf ("\n");
47 + }
48 + }
49 + grub_printf ("\n\n");
50 +
51 /* Hello. */
52 grub_setcolorstate (GRUB_TERM_COLOR_HIGHLIGHT);
53 grub_printf ("Welcome to GRUB!\n\n");
54 grub_setcolorstate (GRUB_TERM_COLOR_STANDARD);
55
56 + grub_printf("Will now sleep for 60 seconds\n\n");
57 + grub_millisleep(60000);
58 grub_load_config ();
59
60 grub_boot_time ("Before loading embedded modules.");



Listing 4 The coreboot patch to output the XMM registers. The patch is based
on coreboot git commit c86762657dc7013a56b1d281286789dae17ad936.

1 diff --git a/src/mainboard/asrock/e350m1/romstage.c b/src/mainboard/asrock/e350m1/romstage.c
2 index 2913c08..89129cf 100644
3 --- a/src/mainboard/asrock/e350m1/romstage.c
4 +++ b/src/mainboard/asrock/e350m1/romstage.c
5 @@ -45,6 +45,23 @@ void cache_as_ram_main(unsigned long bist, unsigned long

cpu_init_detectedx)
6 {
7 u32 val;
8
9 + u32 puf_i;

10 + unsigned char puf_result[128];
11 + for (puf_i = 0; puf_i < 128; ++puf_i) {
12 + puf_result[puf_i] = 0xca;
13 + }
14 + asm(
15 + "movupd %%xmm0, 0(%0);"
16 + "movupd %%xmm1, 16(%0);"
17 + "movupd %%xmm2, 32(%0);"
18 + "movupd %%xmm3, 48(%0);"
19 + "movupd %%xmm4, 64(%0);"
20 + "movupd %%xmm5, 80(%0);"
21 + "movupd %%xmm6, 96(%0);"
22 + "movupd %%xmm7, 112(%0);"
23 + ::"r" (puf_result)
24 + );
25 +
26 /*
27 * All cores: allow caching of flash chip code and data
28 * (there are no cache-as-ram reliability concerns with family 14h)
29 @@ -74,6 +91,14 @@ void cache_as_ram_main(unsigned long bist, unsigned long

cpu_init_detectedx)
30 printk(BIOS_DEBUG, "cpu_init_detectedx = %08lx \n", cpu_init_detectedx);
31
32 post_code(0x35);
33 +
34 + for (puf_i = 0; puf_i < 128; ++puf_i) {
35 + printk(BIOS_DEBUG, "%02x ", puf_result[puf_i]);
36 + if (puf_i % 16 == 15) {
37 + printk(BIOS_DEBUG, "\n");
38 + }
39 + }
40 +
41 printk(BIOS_DEBUG, "agesawrapper_amdinitmmio ");
42 val = agesawrapper_amdinitmmio();
43 if (val)



Listing 5 The coreboot patch to output the cache-as-RAM
stack space. The patch is based on coreboot git commit
c86762657dc7013a56b1d281286789dae17ad936.

1 diff --git a/src/mainboard/asrock/e350m1/romstage.c b/src/mainboard/asrock/e350m1/romstage.c
2 index 2913c08..5e02764 100644
3 --- a/src/mainboard/asrock/e350m1/romstage.c
4 +++ b/src/mainboard/asrock/e350m1/romstage.c
5 @@ -44,6 +44,7 @@
6 void cache_as_ram_main(unsigned long bist, unsigned long cpu_init_detectedx)
7 {
8 u32 val;
9 + u32 puf_i;

10
11 /*
12 * All cores: allow caching of flash chip code and data
13 @@ -74,6 +75,13 @@ void cache_as_ram_main(unsigned long bist, unsigned long

cpu_init_detectedx)
14 printk(BIOS_DEBUG, "cpu_init_detectedx = %08lx \n", cpu_init_detectedx);
15
16 post_code(0x35);
17 +
18 + printk(BIOS_DEBUG, "%p\n", &puf_i);
19 +
20 + for (puf_i = 0; puf_i < 16384; ++puf_i) {
21 + printk(BIOS_DEBUG, "%08x\n", *((&puf_i) - puf_i));
22 + }
23 +
24 printk(BIOS_DEBUG, "agesawrapper_amdinitmmio ");
25 val = agesawrapper_amdinitmmio();
26 if (val)
27 diff --git a/src/vendorcode/amd/agesa/f14/gcccar.inc b/src/vendorcode/amd/agesa/f14/gcccar.

inc
28 index 40e0e31..5bd45f9 100644
29 --- a/src/vendorcode/amd/agesa/f14/gcccar.inc
30 +++ b/src/vendorcode/amd/agesa/f14/gcccar.inc
31 @@ -1542,11 +1542,11 @@ ClearTheStack: # Stack base is in SS, stack

pointer is
32 jne 1f
33 cld
34 mov %edi, %esi
35 - rep lodsl (%esi) # Pre-load the range
36 + #rep lodsl (%esi) # Pre-load the range
37 xor %eax, %eax
38 mov %bx, %cx
39 mov %edi, %esi # Preserve base for push on stack
40 - rep stosl (%edi) # Clear the range
41 + #rep stosl (%edi) # Clear the range
42 movl $0x0ABCDDCBA, (%esp) # Put marker in top stack dword
43 shl $2, %ebx # Put stack size and base
44 push %ebx # in top of stack
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